Wochenübersicht

Wochenübersicht für die Woche vom

30 Jan 2023 bis 05 Feb 2023 (KW 5)

KW4 - KW5 - KW6 - KW7

30 Jan 2023

Seminar über die Physik der kondensierten Materie (SFB/TRR173 Spin+X und SFB/TR288 Kolloquium, TopDyn-Seminar)

JGU

16:00 Uhr s.t., Medien-Raum (03-431)

Joo-Von Kim, CNRS, Université Paris-Saclay
Resonant dynamics and anomalous thermal diffusion of magnetic skyrmions
at Zoom

RIND seminar on Mathematical Physics and String Theory

U. Mainz, LMU Munich, U. Heidelberg, U. Vienna

16 Uhr c.t., None

Konstantin Wernli, University of Southern Denmark
In the Batalin-Vilkovisky (BV) formalism, one can define a perturbative (i.e. given by Feynman graphs and rules) partition function $Z(x_0)$ for any choice of classical background (solution to Euler-Lagrange (EL) equations) $x_0$. In some examples one can extract from $Z$ a volume form on the smooth part of the moduli space of solutions to EL equations, and compare its integral with non-perturbative approaches to quantization. I will review this construction, some results from examples in the literature and ongoing joint work with P. Mnev about the behaviour at singular points $x_0$.
at Zoom

Seminar about Experimental Particle and Astroparticle Physics (ETAP)

Institut für Physik

12:30 Uhr s.t., Staudingerweg 7, Minkowskiraum

Peter Krämer, Institut für Physik
Search for short and long-lived axions in H -> a a -> 4 photons decays with the ATLAS experiment at the LHC
at Zoom

Seminar über die Physik der kondensierten Materie (SFB/TRR173 Spin+X und SFB/TR288 Kolloquium, TopDyn-Seminar)

JGU

16:00 Uhr s.t., Medien-Raum (03-431)

Joo-Von Kim, Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Saclay
Magnetic skyrmions are nanoscale, chiral topological solitons which exhibit a wide variety of interesting dynamical phenomena that have solicited much interest for fundamental reasons and technological applications alike. In this talk, I will discuss some recent experimental and theoretical results on two aspects of skyrmion dynamics in ferromagnetic thin film systems. The first involves the resonant dynamics in multilayered films of [Pt/FeCoB/AlOx]20, which are found to host dense robust skyrmion lattices at room temperature with a relatively low Gilbert damping of ∼0.02 [1]. Broadband ferromagnetic resonance measurements, combined with micromagnetic simulations, reveal distinct resonant modes detected in the skyrmion lattice phase. These are found to involve localised excitations, along with skyrmion core precession emitting spin waves into uniform background with wavelengths in the 50–80 nm range. The second aspect involves thermal diffusion of skyrmions in frustrated systems under spin-orbit torques, where the helicity dynamics leads to an anomalous drift that strongly depends on the strength of the Dzyaloshinskii-Moriya interaction. Such drift processes suggest the importance of helicity coupling to spin-orbit torques and may have bearing on dipole-stabilized bubbles for which drive-dependent skyrmion Hall angles and low drift velocities have been reported. [1] T. Srivastava et al, arXiv:2111.11797 [cond-mat.mes-hall].

aktuell

31 Jan 2023

Physikalisches Kolloquium

Institut für Kernphysik

16:15 Uhr s.t., HS KPH

Dr. Philipp Schmidt-Wellenburg, PSI Switzerland
An electric dipole moment (EDM) of a fundamental particle would violate time and parity symmetry and by the virtue of the CPT theorem also the combined symmetry of charge conjugation and parity inversion. Searches for EDM are generally considered highly sensitive probes for new physics and might shed light on still unresolved questions in particle physics and cosmology like the origins of matter, dark matter, and dark energy. At the Paul Scherrer Institute in Switzerland, we are setting up an experiment searching for a muon EDM with a sensitivity of 3E-21 ecm using, for the first time, the frozen-spin technique~\cite{Farley2004PRL} in a compact storage ring. This will lay the ground work for a second phase with a final precision of better than 6e-23 ecm. This staged approach to search for a non-zero muon EDM probes previously uncharted territory and tests theories of BSM physics by: i) improving the current direct experimental limit of d < 1.5E-19 ecm (CL 90%) by roughly three orders of magnitude; ii) being a complementary search for an EDM of a bare lepton; iii) being a unique test of lepton-flavor symmetries; and iv) in the case of a null result, will be a stringent limit on an otherwise very poorly constrained Wilson coefficient.

Theorie-Palaver

Institut für Physik

14:00 Uhr s.t., Lorentz room (Staudingerweg 7, 5th floor)

Felix Kahlhöfer, KIT
Given our detailed knowledge of the dark matter energy density in the present universe, it is of great interest to study its evolution at early times in order to understand the mechanism of dark matter production. A particularly intriguing scenario, known as freeze-in, is that dark matter particles have tiny couplings and never enter into equilibrium with the thermal bath of Standard Model particles. In this talk, I will discuss various technical challenges that arise in this scenario as a result of the high temperatures and densities in the early universe. Specifically, I will show how to consistently treat the spin statistics of relativistic quantum gases and how to accurately calculate dark matter production via the Higgs resonance. Finally, I will discuss the case of freeze-in with low reheating temperature, which may be testable through cosmological, astrophysical and laboratory observations.

zukünftige Termine
01 Feb 2023

PRISMA+ Colloquium

Institut für Physik

13:00 Uhr s.t., Lorentz-Raum, 05-127, Staudingerweg 7

CANCELED: Prof. Dr. Steen Hannestad, Univ. Aarhus, Denmark
Neutrino physics in the era of precision cosmology

02 Feb 2023

Seminar über Quanten-, Atom- und Neutronenphysik (QUANTUM)

Institut für Physik

14 Uhr c.t., IPH Lorentzraum 05-127

Prof. Stephan Schiller, Heinrich-Heine-Universität Düsseldorf, Institut für Experimentalphysik
Molecular hydrogen ions (MHI), the simplest molecules, are three-body quantum systems composed of two simple nuclei and one electron. They are of high interest for fundamental physics and metrology because they provide the missing link between the fields of mass and g-factor measurements with Penning traps and spectroscopy of hydrogen-like atoms. Basically, the new ingredients introduced by the MHI are the long-range nucleus-nucleus interaction, absent in the hydrogen atom, and the quantized motion of the nuclei. Precision spectroscopy of the MHI can thus furnish novel results: (1) on the masses of proton and deuteron (in the future, also of tritium), (2) set limits for beyond-Standard-Model (BSM) forces, (3) verify the wave character of matter, and (4) test alternative theories of quantum mechanics. This is performed by comparing or matching experimental and theoretical rotational and/or vibrational frequencies. The comparison is enhanced by the availability of several recently measured transition frequencies and recent advances in ab initio theory. An additional opportunity for probing the interactions between the particles within the MHI is the precision measurement of its hyperfine structure (HFS). Only the synthesis of the HFS of the hydrogen atom, of the deuterium atom and of the molecular hydrogen ion allows probing the physics of HFS at the finest level, resolving the issue of the uncalculable nuclear contributions. We present recent results of our spectroscopy of sympathetically cooled MHI, its results and interpretation. An outlook on near-future studies is also given.

GRK 2516 Soft Matter Seminar

Uni Mainz

14:30 Uhr s.t., Minkowski Room, 05-119, Staudingerweg 7

Swapnasopan Datta, JGU, Chemistry
Conventional chemistry deals with reactants that lead to stable molecules following a classical equilibration pathway. The same holds for classical self-assembly processes, in which non-covalent interactions lead to assembly according to thermal equilibration. There are also a number of systems that reach a metastable state momentarily, and subsequently jump to another lower energy state. In supramolecular systems, this is called pathway complexity. The propensity to transition from a metastable state to an equilibrium state is a function of the energy barrier with respect to thermal energy. This is fundamentally different from the far-from-equilibrium way living systems work, which can be achieved by employing a ‘fuel’ which drives a system to a high energy state and coupling it with an environment which can bring the system back to the original state. Keys to non-equilibrium behaviour are the mechanisms through which systems are able to extract energy from the chemical reactants (‘fuel’) that drive such processes. In our group, a fuel driven enzyme mediated reaction network was established where a ligation reaction occurs followed by a dynamic steady state, whose lifetime depends on the fuel concentration and dynamics is decided by the ratio of the ligation and restriction enzymes, and finally the restriction process dominates giving back the monomers. This is achieved in our case by using ATP as a fuel which activates a ligation enzyme leading to formation of DNA polymers which get cleaved by the restriction enzyme giving back the monomers. By tuning the interactions between these polymers, one can give rise to multivalent DNA coacervates which phase separate as a function of time and eventually vanish when the restriction step dominates. This liquid liquid phase separation (LLPS) process is fundamentally different from conventional coacervation in that it occurs as a result of interaction between polymers which are at a very high energy as opposed to thermodynamically stable phase separation. In this talk I will talk about trapping such a reaction module inside a ‘protocell’ which is a simple mimic of a real cell and explore the possibility of making a synthetic cell bottom up inside which transient LLPS might occur. For this project, we are using liposomes as cell mimics as the phospholipid bilayer which they contain closely resembles a cell.
at Zoom

03 Feb 2023

Seminar über Theorie der kondensierten Materie / TRR146 Seminar

K. Binder/ A. Nikoubashman / F. Schmid / G. Settanni / T. Speck / M. Sulpizi / P. Virnau

10:00 Uhr s.t., Newtonraum, 01-122, Staudingerweg 9

Jeetain Mittal, Texas A&M
TBA