Wochenübersicht – nächste Woche

Wochenübersicht für die Woche vom

22 Apr 2024 bis 28 Apr 2024 (KW 17)

KW15 - KW16 - KW17 - KW18

keine vergangenen Seminare

zukünftige Termine
23 Apr 2024

Theorie-Palaver

Institut für Physik

14:00 Uhr s.t., Lorentz room (Staudingerweg 7, 5th floor)

Yann Gouttenoire, Tel Aviv U.
Cosmological first-order phase transitions are said to be strongly supercooled when the nucleation temperature is much smaller than the critical temperature. The phase transition takes place slowly and the probability distribution of bubble nucleation times is maximally spread. Hubble patches which get percolated later than the average are hotter than the background after reheating and potentially collapse into primordial black holes (PBHs). I will give a review of this PBHs formation mechanism and of its most recent developments.

24 Apr 2024

PRISMA+ Colloquium

Institut für Physik

13:00 Uhr s.t., Lorentz-Raum, 05-127, Staudingerweg 7

Prof. Dr. Bastian Märkisch, TU München
Neutron Beta Decay with Perkeo III and Perc

25 Apr 2024

Seminar über Quanten-, Atom- und Neutronenphysik (QUANTUM)

Institut für Physik

14 Uhr c.t., IPH Lorentzraum 05-127

Prof. Dr. Ralf Röhlsberger, DESY, Hamburg
Using the high-intensity radiation of the European X-ray Free-Electron Laser, we recently succeeded to excite the sharpest atomic transition in the hard X-ray range, the 12.4 keV nuclear resonance of the stable isotope Scandium-45 [1]. With its extremely narrow natural linewidth of 1.4 femto-eV, it opens not only new possibilities for the development of a nuclear clock, but also for research linked to the foundations of physics, such as time variations of the fundamental constants, the search for dark matter as well as probing the foundations of relativity theory. Furthermore, our experiment demonstrates the great potential of self-seeding X-ray lasers with high pulse rates as a promising platform for the spectroscopy of extremely narrow-band nuclear resonances. The next steps towards a nuclear clock based on Scandium-45 require a further increase of the spectral photon flux using improved X-ray laser sources at 12.4 keV and the development of frequency combs reaching up to this energy. [1] Yuri Shvyd’ko et al., Nature 622, 471 (2023)